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Abstract 

Field programmable gate arrays (FPGAs) have become imperative for 

implementing large digital circuits in customized VLSI circuits. A key 

component in the design of an FPGA is its routing architecture, which 

comprises of the wiring segments and routing switches that interconnect the 

FPGA’s logic blocks. In order to obtain optimal routing solution in a 

reasonable amount of time, evolutionary approaches are employed, which 

provide better quality solutions in shorter run times compared to other 

approximate algorithms. Evolutionary approaches perform even better when 

optimization of multiple objectives is considered by virtue of their population-

based exploration strategy. This paper illustrates the optimization of the delay 

and cross talk both for FPGA routing using non-dominated-sorting-genetic-

algorithm (NSGA) methodology as proposed by N. Srinivas and K. Deb (1994), 

formulated as multiple objective optimization problem. The proposed global 

router accepts placed-netlist as input; divides connections into two-point 

connections and then routes each of them separately. The routing is optimal for 

both the delay and cross-talk for a connection. 

1. Introduction 

Nowadays, Field-Programmable Gate Arrays (FPGAs) are being widely 

accepted as means of implementing large digital circuits in a customized VLSI 

chip. Array-based architecture is one of the most significant types among a large 

number of commercially available styles of FPGAs, It consists of rows and 

columns of logic blocks with horizontal routing channels between the rows and 

vertical channels separating the columns. 

The traditional routing strategy is a two-stage approach, in which global 

routing is followed by detailed routing. There are three main concerns of the 

present work- (i) Multiple Objectives, (ii) Evolutionary algorithm approach (i.e. 

Genetic algorithm), and (iii) Routing for FPGAs. One of the most important 

aspects of our work is multi-objective optimization, where we consider two 

objectives crosstalk and delay both of which have to be minimized for a 

connection. Genetic algorithm (GA) works on a collection of several alternative 

solutions to a given problem. Each solution in the population is called a string or 

chromosome.  GA, which is a probabilistic approach, searches for the population 

of points instead of single point. Our approach borrows the genetic operators’ 

formulation from C. W. Ahn and R. S. Ramakrishna (2002). The crossover 

operation exchanges partial chromosomes (partial routes) at positionally 

independent crossing sites and the mutation operation maintains the genetic 

diversity of the population. The algorithm can cure all the infeasible solution 
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with a simple repair function.  

Although FPGAs nowadays have high logic capacities, yet speed performance 

has become a critical issue during digital design implementation for systems. 

The generalized interconnect structure of the FPGA forms the largest 

performance bottleneck. In particular, routing architecture research needs good 

routing software to fairly evaluate the capabilities of each FPGA design. 

Presently available routers like VPR as proposed in V. Betz and J. Rose (1997) 

and time driven router as proposed in V. Betz, J. Rose, and A. Marquardt (1999) 

etc. are single objective optimization based tools. This paper discuses a global 

routing solution and describes a framework that is adapted to island style FPGA 

routing architectures. We present a brief overview of multi-objective 

optimization and discuss the algorithm parameters in Section 2. Alongside brief 

introduction to genetic algorithm and cross talk model, we provide an algorithm 

statement in Section 3. We present the evaluation results of optimization 

framework in Section 4 and conclude in Section 5. 

2. Multi-objective optimization: An overview 

A general multi-objective optimization problem consists of a number of 

objectives and is associated with a number of inequalities and constraints. An 

example statement is as follows.  

Minimize/Maximize fi(x) ∀ i=1,2,…N; Subjected to gj(x)  ∀j=1,2,…J and 

hk(x) ∀k=1,2,…K. 

2.1. Terminology 

We discuss few terms and concepts related to optimization space and genetic 

algorithms before going through the overview of solution approaches, for 

details, see K. Deb (2001). 

Pareto optimality: A point X∈f is pareto optimal if for every X∈f either 

( ) ( )( )∏ ∈ =Ii Xifif X *  or, there is at least one i∈I such that 

( )















>
*

XifXif
. Thus when a set P is the entire search space, or P≡S, 

the resulting non dominated set PP is called the pareto optimal set.  

Dominance : A solution x(1) is said to dominate the other solution x(2), only 

if both of the following conditions are  true- (i) the solution x(1)  is no 

worse then x(2) in all objectives, and (ii) the solution x(1) is strictly better 

than x(2) in at least one objective. For a given finite set of solutions, we 

can perform all possible pair wise comparisons and find which solution 

dominates which and which solutions are non-dominated with respect to 

each other. At the end we get a set of solution that does not dominate 

each other. This set has another property that any solution outside of this 

set, will be dominated by a solution in the set. This mean that the 

solutions of this set are better compared to rest of the solutions. This set 

has a special name called the non-dominated set for the given set of 

solution.  

Model for sharing function 

Instead of replacing a solution by a similar solution, D. E. Goldberg and 

J. Richardson (1989) suggested a concept, where the focus was on 

degrading the fitness of the similar solution. It is required to find q 

optimal solutions with the available resource of finite population with N 

slots. As q<<N, each optimum can work with an adequate subpopulation 



(niche) of the solution. Since the population will need representative 

solution of all q optima, somehow the available resources of N population 

slot must have to be shared among all representative solutions. Goldberg 

and Richardson (1989) suggested an adaptive strategy where a sharing 

function is used to obtain an estimate of number of solution belonging to 

each optimum. 
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If d=0 then Sh(d)=1, then a solution has full sharing effect on itself.  If d 

> σshare, the two solutions are at least a distance of σshare  away from each 

other. If Sh(d)=0 then the two solutions, which are at a distance of σshare 

away from each other, do not have any sharing effect on each other. A 

niche count nci, which is the estimate of the extent of the crowding near a 

solution, is given by ∑ =
=

N

j iji dShnc
1

)( .The parameter dij is the distance 

between the ith and jth solution. Finally, the shared fitness value is 

computed as fi’ =fi / nci.  

2.2. Overview of Evolutionary approaches 

Two major problems must be addressed when an evolutionary algorithm is 

applied to Multi-objective optimization- (i) How to accomplish fitness 

assignment and selection, respectively, in order to guide the search towards the 

Pareto-optimal set; and (ii) How to maintain a diverse population in order to 

prevent premature convergence and achieve a well distributed trade-off front. 

Different approaches are classified with regard to the first issue, where one can 

distinguish between criterion selection, aggregation selection, and Pareto 

selection. Methods performing criterion selection switch between the objectives 

during the selection phase. Each time an individual is chosen for reproduction, 

potentially a different objective will decide which member of the population will 

be copied into the mating pool. Aggregation selection is based on the traditional 

approaches to multi-objective optimization where the multiple objectives are 

combined into a parameterized single objective function. The parameters of the 

resulting function are systematically varied during the same run in order to find 

a set of Pareto-optimal solutions. Finally, Pareto selection makes direct use of 

the dominance relation. D. E. Goldberg and J. Richardson (1989) were the first 

to suggest a Pareto-based fitness assignment strategy. The other approaches 

reported in literature are C. W. Ahn and R. S. Ramakrishna (2002), S. Brown, J. 

Ross, and Z. G. Vranesic (1992), J. Greene et al (1990); Niched Pareto Genetic 

Algorithm (NPGA) by J. Horn and N. Nafpliotis (); Nondominated Sorting 

Genetic Algorithm (NSGA) by N. Srinivas and K. Deb (1994); Vector 

Evaluated Genetic Algorithm (VEGA) as discussed in J. D. Schaffer (1984) and 

Steven J. E. Wilton (2001). 

3. Cross talk aware Genetic Algorithm 

It has been shown by S. Trimberger, ed. (1994) that the feasibility of FPGA 

design is constrained by routing resources more than by logic resources. Routing 

channels in symmetrical-array architecture FPGA contain predefined wiring 

segments of various lengths. These may be connected to the pins of the gates or 

joined end-to-end to form longer segments by programmable switches. In this 



section, algorithm formulation is discussed with twin objectives of minimizing 

delay as well crosstalk. 

3.1. Genetic operators 

We adopt genetic operators formulation from C. W. Ahn and R. S. 

Ramakrishna (2002). 

3.1.1. Chromosome encoding 

A chromosome of the proposed GA consists of sequences of positive integers 

that represent the IDs of nodes through which a routing path passes. The length 

of the chromosome is variable, but never exceeds the maximum length, equal to 

the total number of nodes in the network. A chromosome (routing path) encodes 

the problem by listing up node IDs from its source node to its destination node 

based on depth first search database of the circuit.  

3.1.2. Crossover 

In the proposed scheme, two chromosomes chosen for crossover should have 

at least one common gene (node) except for source and destination nodes, but 

there is no requirement that they be located at the same locus. The procedure is 

illustrated in Figure 3. It is possible that loops are formed during crossover. To 

solve this we uses repair function. 

Repairing for Routing Loop avoidance 

It should be remembered that none of the chromosomes of the initial 

population or after the mutation is infeasible because when once a node is 

chosen, it is excluded from the candidate nodes forming the rest of the path. The 

repair function finds and eliminates loops in a routing path without unduly 

increasing computational costs. 

The proposed repair function is described in Figure 2 and illustrated in Figure 

3. One of the offspring produced after crossover becomes infeasible because the 

new route contains the loop. The repair function detects the loop by a simple 

search. After that, the lethal genes (forming the loop) that violate the constraint 

condition are deleted; those nodes are (but one of two) in this example. 

3.1.3. Initial population generation 

We use the depth first traversal method for initial population generation. After 

the initial population has been generated, we evaluate each individual and select 

the half of the best solutions and add them to next generation.  Then we apply 

genetic operators to create offsprings and if they are valid we keep adding them 

to the next generation till they all form a population of preconceived size. 
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Figure 1 Encoding Scheme and Routing Path 

// C: input chromosomes, C*: output chromosomes, l: length of chromosome 

For (all i, j AND i < ( l - j) {  

if( C[i] ==C[l -j])  //Find a loop 

C*=C[1:i]||C[l -i+1:l];     } // Eliminate the loop 

Figure 2 Procedure for the Repair Function 



3.2. Delay and cross talk modeling 

3.2.1. Delay model 

Figure 4 shows the RC tree corresponding to a path for a net. For each of the 

paths, it is assumed that the logic block driving the net is characterized by an 

output resistance and capacitance called Rsource and Csource.  

Also, a load capacitance called Cload is added at the sink end of the path. In 

Figure 4 path shown involves three resistors, labeled R, that correspond to 

routing switches. Also, the values of the capacitors account for the number of 

routing switches in the path that are turned ON, the number of OFF switches 

that “hang on” the wire segments in the path, and the capacitance of the wire 

segments (Cwsi represents the capacitance of a wire segment that spans i logic 

blocks). The values of R and C are taken from M. Khellah, S. Brown, and 

Z.Vranesic (1993).  Using the analytic model, the delay of a net is defined as the 

largest delay from the net’s source to any of its sinks. We then define the speed-

performance of an entire circuit implemented in an FPGA as the average of the 

net delays in the circuit. 

3.2.2. Crosstalk Model 

Crosstalk occurs when a change in voltage on one trace causes a change in 

voltage on a nearby trace. We assume a simple model, in which crosstalk 

between two traces is modeled by a change in the effective capacitance seen by 

both traces. The capacitance of a trace i can be written as 

( )∑ ≠∧∈
+=

ijTj ijijcijfixedi dlCCC
γηλ / . Assuming all tracks are within a channel are 

separated by the same distance, by combining di,j with the technology dependent 
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Figure 4 RC tree network 
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Figure 3 Loop prevention- (a) Two Parents (b) Two Children after 

crossover (c) Child having loop (d) Child after repair 



terms, and approximating η as 1, we can write ∑ ∈
+=

Tj ijcijfixedi lCCC λ . Here, 

Cfixed is the capacitance of the metal trace itself, as well as any switches or 

buffers attached to the trace, T is the set of all traces, lij is the distance that traces 

i and j are adjacent, di,j is the distance between trace i and j, λij is a parameter 

described ahead, and γ, η, and Cc are process-dependent constants (typical 

values of γ and η are 1.8 and 0.92 respectively). If the two tracks are switching 

in the same direction, λi,j can be approximated as 0, since there is no induced 

crosstalk for signals switching together. If the two signals are switching in the 

opposite direction, λi,j can be approximated as 2. If only one of the signals is 

changing, λij can be approximated as 1.  

 

During routing, it is difficult to determine the relative switching activities of 

each signal. Thus, our timing model makes the following pessimistic 

assumptions when computing the effective capacitance of tracks i- (i) For all 

neighbors j which are used to carry a signal, we assume the worst-case crosstalk 

ensues (i.e. λi,j is 2). (ii) For all neighbors j which are unused, we assume that j is 

tied to a constant voltage, so λi,j is 1. Thus, for any given routing, the effective 

capacitance of each track can be computed, and this can be used in the Elmore 

delay to estimate the delay of the net. But this method can be effectively applied 

during the detailed routing. While performing the global routing it is not 

meaningful to compute the exact crosstalk as during global routing, although a 

net may get assigned to a channel, the exact track occupied by it not known. We 

have chosen a simplified model in which Cross-talk ∝  overlapping segment-

length. While assigning the channel for a connection of a net we consider five 

previously-routed-critical-nets overlapping as a cross-talk value. In this manner, 

Step 1 Convert the two-point placed netlist into intermediate format. 

Step 2 Calculate the overall segments required to route a net. Sort the nets in decreasing  

order of number of    segments required to route each of the net.  

Sort in decreasing order of criticality, among sub-groups. 

Step 3 While (there exist a net to be routed) { 

Input Source and Destination Nodes; 

GENERATE initial population;  

Calculate delay and crosstalk for each Individual; 

 For(ng=0;ng < no_of_gen;ng++) { 

  EVALUATE fitness (Using NSGA);  

   SORT (Decreasing Order of Dummy Fitness); 

   SELECT (population_size/2); 

  While(no_of_sec_pop < population_size) { 

Perform CROSSOVER to create new offspring;  

     MUTATE(Offspring with Mutation Rate); 

  REPAIR solutions with Loops 

  ADD offspring to New Population; } } 

 EVALUATE Population (Using NSGA); 

 SORT( Decreasing Order of Dummy Fitness); 

 Select Best Individual; 

 Check for constraint of Maxnet to be routed through Channel; 

 Select that satisfies constraint; 

 Show the delay and net’s overlap with previous five routed nets; } 

Step 4 For(Netno=1;Netno ≤ maxnet;Netno++) 

 Calculate the Exact Overlap of Net; 

Figure 5 Algorithm statement- Multi-objective GA 



we ensure to follow the philosophy imbibed in aforesaid analysis for 

computation of Ci. 

 

3.3. Multiple objective cost function and algorithm  

Our objective here is to minimize the objectives, the delay and the crosstalk. 

We assume two variables x1 and x2, where x1 represents the delay of the 

chromosome and x2 represents the crosstalk. The problem formulation can now 

be given as follows. 

Minimize  f1(x) AND f2(x) when f1(x) = x1;  f2(x) = (1+x2)/x1 

This problem looks simple but has conflicting scenarios between both the 

objectives, resulting in a set of pareto optimal solutions. This manipulation of 

the two variables allows us to find the following relation ship between both the 

objectives as  f2 = (1+x2)/f1. The values of f1 and f2 are calculated for each of the 

individual after NSGA has been used to assign the dummy fitness. The 

individual having the maximum value of the shared fitness is the best solution of 

the present population. A formal statement of the genetic algorithm is provided 

in Figure 5. 

4. Results 

An architecture consisting of array of CLBs of size 4×4 is chosen for 

evaluation of algorithm and routing is performed for the longest connection by 

varying the population-size, maximum number of generations used, and the 

sharing parameter (σshare). The graph model is illustrated in Figure 6. The 

obtained results show that on increasing the number of generations and the 

population size, better results in terms of required number of segments for 

routing can be obtained. As illustrated in Figure 6, one of the longest paths in 

4x4 array of CLB architecture would be from 0 to 23, which requires 6 segments 

for routing. For routing of this connection between 0 and 23, the results are 

presented in Table 1. 

Table 1 Solution quality in term of # of segments 

Number of Generations 
σshare Population size 

5 8 10 15 20 

10 17 17 16 16 14 

15 14 14 14 11 11 

20 11 11 11 11 11 
0.10 

25 11 11 9 11 11 

10 16 16 13 13 13 

15 12 12 12 12 12 

20 11 11 8 6 6 
0.15 

25 11 11 11 6 6 

10 17 17 16 16 17 

15 13 13 12 11 11 

20 11 11 11 8 11 
0.20 

25 8 8 9 8 11 

 

On observing the Table 1, it is obvious that increasing number of generations 

beyond 15 or the population size beyond 20, the improvements in the results are 

not significant.  

 



 

Table 2 Optimum Parameters Values 
First optimum segments are obtained for σshare 

Population size No. of Generation 

0.10 15 15 

0.15 20 15 

0.20 20 15 

 

In order to get better solution, the population size should be at least 20, and 

number of generations should be at least 15.  Here, σshare is an important 

parameter on which our optimum path depends. Results show that present case, 

σshare =0.15 is a good approximation. Further the exploration of routing results 

is done for the given the circuit connections as shown in Figure 6 (a). The 

solution paths are illustrated in Figure 6 (b). 

 

Table 3 Routing Results for circuit shown in Figure 6 (a) 
Populaton Size=20, Number of Generation=15, dshare=0.15 

Routing Parameters Net 1 Net 2 Net 3 Net 4 

Min No. of Segments Required 1 1 2 4 

Segments Required after Routing 1 1 2 4 

Delay(ns) 0.2089767 0.2089767 0.341533e 0.4078112 

Overlapping Segments 0 0 0 0 

5. Conclusions 

In this paper, we have presented an optimal FPGA global router, which 

optimizes delay along with crosstalk using multi-objective genetic approach. 

Exact crosstalk can be measured only if some detailed routing information is 

available. We have used the delay model proposed by M. Khellah, S. Brown, 

and Z.Vranesic (1993) that can be replaced by a better model in future. An 

efficient method for Crosstalk and Delay estimation will improve the 

performance of algorithm when replaced in future. 
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Figure 6 (a) Test circuit netlist;  

(b) Path shown graphically for solution in  

Table 3; 
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